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Abstract: A series of novelâ-site amyloid precursor protein cleaving
enzyme (BACE-1) inhibitors containing an aminoethylene (AE)
tetrahedral intermediate isostere were synthesized and evaluated in
comparison to corresponding hydroxyethylene (HE) compounds. En-
zymatic inhibitory values were similar for both isosteres, as were
structure-activity relationships with respect to stereochemical prefer-
ence and substituent variation (P2/P3, P1, and P2′); however, the AE
compounds were markedly more potent in a cell-based assay for
reduction of beta-secretase activity. The incorporation of preferred P2/
P3, P1, and P2′ substituents into the AE pharmacophore yielded
compound7, which possessed enzymatic and cell assay IC50s of 26
nM and 180 nM, respectively. A three-dimensional crystal structure
of 7 in complex with BACE-1 revealed that the amino group of the
inhibitor core engages the catalytic aspartates in a manner analogous
to hydroxyl groups in HE inhibitors. The AE isostere class represents
a promising advance in the development of BACE-1 inhibitors.

Alzheimer’s disease, a condition marked by the deposition
of plaques composed of the amyloid beta (Aâ) peptide in the
brain, is a debilitating health problem that affects a significant
percentage of the elderly population worldwide.1 Aâ is a 40-
42-residue internal peptide segment of the amyloid precursor
protein, which is liberated by the action of two proteases, beta

secretase and gamma secretase.2 Evidence gathered in recent
years strongly implicates the aspartyl protease, BACE-1 (beta
amyloid precursor protein cleaving enzyme), as the predominant
beta secretase.3 BACE-1 is therefore an important Alzheimer’s
disease therapeutic target, based on the evidence that inhibition
of the enzyme should reduce generation of Aâ in the brain.4

Medicinal chemists in industry and academia have ac-
cumulated a wealth of knowledge and experience in developing
inhibitors of aspartyl proteases, most notably for HIV protease
and renin.5,6 A common strategy in inhibitor design is replace-
ment of the substrate scissile amide bond with a tetrahedral
intermediate isostere, typically a secondary alcohol. Four
common hydroxyl-containing inhibitor scaffolds include the
hydroxyethylene (HE), hydroxyethylamine (HEA), statine, and
hydroxymethylcarbonyl (HMC) motifs (Chart 1,A-D). These
pharmacophores, which differ from one another by the func-
tionality alpha and beta to the hydroxyl group, engage one or
both of the catalytic aspartates of the enzyme via hydrogen
bonds.6

For BACE-1, a number of hydroxyl-containing inhibitor series
have been described.7,8 High-resolution crystal structures of HE
and HEA inhibitors in complex with BACE-1 have revealed
that the active site is similar to other pepsin family aspartyl
proteases, and the hydroxyl groups of the cores engage in
hydrogen bonds to both Asp32 and Asp228.9-11

Given the common hydrogen bond donor/acceptor dual
functionality of these hydroxyl core motifs, we sought to
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Chart 1. Aspartyl Protease Inhibitor Core Motifs

© Copyright 2006 by the American Chemical Society

Volume 49, Number 3 February 9, 2006

10.1021/jm0509142 CCC: $33.50 © 2006 American Chemical Society
Published on Web 01/12/2006



determine if a primary amine group could act as a similar
BACE-1 inhibitor pharmacophore. This basic functional group
was anticipated to afford distinct physicochemical properties
in the resulting compounds, including increased solubility.
Primary amines have been used successfully in two classes of
renin inhibitors. Compounds containing an aminostatine isostere
(Chart 1, E) displayed potencies similar to that of statine
comparators.12 A renin inhibitor containing an aminoethylene
core (AE, Chart 1,F) has also been reported, which possessed
potency similar to that of an otherwise identical HE analogue.13

In this work, we explored the AE isostere as a central scaffold
in a series of novel BACE-1 inhibitors. We noted previous
studies on peptidic HE BACE inhibitors that reported preferred
P- and P′-segments,14,15 including an isophthalamide group as
a favored P2/P3 peptide replacement,15 and utilized these
components as a starting point. Installation of this isophthal-
amide on an HE scaffold yielded compound1, which showed
potent activity in an enzymatic assay (Ki

app ) 71 nM) but was
inactive (IC50 > 7 µM) in a cell-based assay for inhibition of
sAPPâ_NF secretion16 (Table 1). Replacement of the HE
isostere with the AE core afforded2, which possessed slightly
reduced enzymatic inhibitory activity but distinctly improved
cell potency. Variation of the stereochemistry in the AE isostere
indicated that theS isomer was strongly preferred for activity
(see3 versus2), consistent with what was observed for the
statine BACE inhibitors.17

To decrease the molecular weight and peptidic character of
the compounds, a substitute for the P2′ Val-benzyl amide (Val-
Bn) group was sought. An optimization study revealed that
4-fluoroaniline (4-FA) was a particularly good replacement at
this position.18 While this substitution resulted in enzymatic
potency decreases of∼20-fold for both the HE (4) and the AE
(5) scaffolds, it eliminated one amide bond and afforded a 95
amu reduction in molecular weight. Compound5 still retained
modest cell potency (Table 1).

Published data indicated that statine-type inhibitors containing
benzyl P1 position substituents (i.e. Phe analogues) had poten-
cies comparable to those containing isobutyl P1 groups (i.e. Leu
analogues).17 Quantitative SAR around the P1 substituent for
HE inhibitors is not well documented, although it is clear that
benzyl P1 analogues can yield potent inhibitors.15,19 Upon
incorporation of a benzyl P1 substituent in the AE isostere
compounds, substantial potency increases were observed relative
to the isobutyl analogues (see6 vs 2, 7 vs 5). In the context of
a Val-Bn P2′ motif, enzymatic potency was increased at least

4-fold, to an Ki
app value approaching the concentration of

enzyme in the assay, and cell-based potency was increased
approximately 130-fold (2 vs6).20 Enzymatic and cell potencies
were improved approximately 100-fold and 300-fold, respec-
tively, for the 4-FA analogue (5 vs 7). Thus, the benzyl P1
substituent afforded dramatically improved affinity in the context
of the AE scaffold and appeared to act synergistically with the
4-FA P2′ group.

We determined the three-dimensional cocrystal structure of
7 in complex with BACE-1 at 2.4 Å resolution (Figure 1).21

The overall protein and active site structure is essentially
identical (CR RMSD <0.6 Å) to that of the HE and HEA
complexes reported previously.9-11 The primary amine group
of the inhibitor makes hydrogen bond contacts to both catalytic
aspartates, Asp32 and Asp228 (2.9 and 2.6 Å, respectively), in
a position identical to that for the hydroxyl group of in the HE
complexes. In addition, the benzyl P1 element and the iso-
phthalamide P2/P3 substituent overlay precisely with the same
groups in an analogous HEA inhibitor structure.11 On the prime-
side, the amide of the 4-FA group of7 forms a hydrogen bond
to Gly34 (2.8 Å), and the aniline ring lies snugly in a trough,
surrounded by resides Ser35, Val69, Pro70, Tyr71, Ile126, and
Arg128.

Table 1. BACE-1 Inhibitor Data

compound X R1 R2 BACE1Ki
app(µM) sAPP_NF IC50 (µM)a

1 S-OH Leu Val-Bn 0.071( 0.015 >6.7b

2 S-NH2 Leu Val-Bn 0.12( 0.013 0.74( 0.13
3 R-NH2 Leu Val-Bn 11.3( 1.5 9.9( 4.4
4 S-OH Leu 4-FA 1.3( 0.28 >20
5 S-NH2 Leu 4-FA 3.0( 0.92 6.0( 0.49
6 S-NH2 Phe Val-Bn 0.033( 0.004 0.0052( 0.004
7 S-NH2 Phe 4-FA 0.026( 0.005 0.18( 0.078

a Mean( SD for two runs in a cell-based assay for the release of the soluble N-terminal fragment of an APP variant from cultured HEK 293T cells.16

b Concentration at whichg20% cytotoxicity was observed via Trypan Blue assay.

Figure 1. Overlay of the cocrystal structures of the AE inhibitor7
(green) and the HE octapeptide inhibitor (yellow) from 1FKN9 in the
BACE-1 active site. Enzyme flap residues have been removed to
highlight the interactions with the catalytic aspartates (Asp32 and
Asp228).
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The AE motif represents a new class of BACE-1 inhibitor
pharmacophore, having an inherent binding affinity for the
catalytic site that is similar to the well established HE scaffold.
Although the enzymatic inhibition SAR trends and active site
binding position of the two isosteres tracked very closely with
one another, the cell-based activity was markedly better for the
AE compounds. While the source of this potency difference is
unclear, an obvious physicochemical difference is the expected
protonation, and hence more hydrophilic character, of the AE
inhibitors at neutral pH and in the more acidic cellular
compartments in which BACE-1 is localized. Recently reported
HEA inhibitors, also having an inherently more hydrophilic core
than HEs, have also shown high potency in cell-based assays.8

In summary, the combination of the AE isostere with
optimized replacements for the P2/P3 dipeptide, P2′ dipeptide,
and P1 side chain resulted in a compound,7, that represents a
promising new series of BACE-1 inhibitors that is distinct from
others reported to date. Compound7 displayed good enzymatic
and cell-based inhibitory potency, and a molecular weight below
600. Further improvement of these parameters and the incor-
poration of other drug-like properties into AE isostere inhibitors
are the subjects of ongoing efforts.
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